The Maryland Public Health Laboratories Baltimore, MD

Penn State Architectural Engineering Capstone Project

Greg Tinkoff | Construction Management Option | Advisor: Dr. Robert Leicht

- Introduction
- II. Project Overview
 - **Building Overview**
 - II. Project Participants
 - III. Building Location
 - **IV. Construction Site Plan**
- III. Analysis #1: Precast Concrete Structural System
- IV. Analysis #2: Virtual Mock-ups for Building Façade System
- V. Analysis #3: Implementation of Alternate Dewatering System
- VI. Analysis #4: Value Engineering Stormwater Harvesting System
- **VII.** Conclusion & Recommendations
- VIII.Acknowledgements
- IX. Questions

Building: The Ma
Building Location
Hopkins Universi
Building Size: 23
Number of Storie
Occupancy/Func
Occupancy/Fund Project Cost: \$1
Project Cost: \$1
Project Cost: \$1 Dates of Constru

Building Overview

laryland Public Health Laboratories

n: Lot-4 on the Science + Technology Park at Johns

sity, Baltimore, MD.

34,046 Gross S.F.

es: 6 Stories + 2 Story Mechanical Penthouse

ction Type: Offices & Medical Research Laboratories .11,400,000

Locion: December 19, 2011- April 19, 2014

Method: Design Build

ump Sun CMc

Project Participants

Developer: Forest City-New East Baltimore Partnership **Owner:** Maryland Economic Development Corporation **Occupants:** The Maryland Department of Health & Mental Hygiene Building Designer: HDR, Inc. Project Management:

General Contractor: Turner Construction Co.

Jacobs Engineering

- Introduction
- II. Project Overview
 - **Building Overview**
 - II. Project Participants
 - III. Building Location
 - **IV. Construction Site Plan**
- III. Analysis #1: Precast Concrete Structural System
- IV. Analysis #2: Virtual Mock-ups for Building Façade System
- V. Analysis #3: Implementation of Alternate Dewatering System
- VI. Analysis #4: Value Engineering Stormwater Harvesting System
- VII. Conclusion & Recommendations
- VIII.Acknowledgements
- IX. Questions

Building Location

1710 Ashland Avenue, Baltimore, Maryland, United States

Construction Site Plan

Analysis #1: Precast Concrete Structural System

- I. Introduction
- II. Project Overview
- III. Analysis #1: Precast Concrete Structural System
 - Precast Concrete System Overview
 - II. Structural System Breakdown
 - III. Sequencing
 - IV. Schedule Impacts
 - V. Cost of System
 - VI. Cost Analysis
- IV. Analysis #2: Virtual Mock-ups for Building Façade System
- V. Analysis #3: Implementation of Alternate Dewatering System
- VI. Analysis #4: Value Engineering Stormwater Harvesting System
- VII. Conclusion & Recommendations
- VIII. Acknowledgements
- IX. Ouestions

Precast Concrete System Overview

- 8" Hollowcore Plank Slab System with 2" topping • 2 hour fire rating - IBC 2009 & NFPA Standard No. 1
- Precast Concrete Structural Beams
 - Original steel reinforcement layout. (1-1/2")
- Precast Concrete Columns
 - Original steel reinforcement layout (Depends on concrete column)

Structural System Breakdown

- Building Slab sectioned into plank dimensions 4'x32' & 4'x36' • Cutting the slab necessary to meet irregular building
 - perimeter.
- Beams produced to match the beam schedule provided. • Long beams were divided into parts
- Columns produced combining multiple columns within column schedule
 - 54' in height max. (necessary for delivery and erection)
 - Splicing occurs at slab connections.

- I. Introduction
- II. Project Overview
- III. Analysis #1: Precast Concrete Structural System
 - Precast Concrete System Overview
 - II. Structural System Breakdown
 - III. Sequencing
 - IV. Schedule Impacts
 - V. Cost of System
 - VI. Cost Analysis
- IV. Analysis #2: Virtual Mock-ups for Building Façade System
- V. Analysis #3: Implementation of Alternate Dewatering System
- VI. Analysis #4: Value Engineering Stormwater Harvesting System
- VII. Conclusion & Recommendations
- VIII. Acknowledgements
- IX. Ouestions

PRECAST STRUCTURAL SYSTEM PRODUCTION DURATION

Structural Member

Hollow Core Planks

Beams/Columns

Construction

- south.
- Beam erection
- Hollow core plank installation
 - Place shoring during lifts.

Sequencing

Schedule Impact

Quantity	Production Rate	Production Duration
665	3/days	222 days
1833	50/day	36.75 days

Beams/columns and hollow core planks produced simultaneously. Total Production Duration: 222 days • 75% of production complete before installation. (Begin June 25, 2011)

Columns erected by column lines from west to east and from north to

• Connect to beams by grouting them to hunches.

PRECAST STRUCTURAL SYSTEM ERECTION DURATION

Structural Member	# of Members	Erection Rate	Erection Duration
Beams/Columns	665	30 min./member	41.6 days
Hollow Core Planks	1833	10 min./member	38.2 days
TOTAL DURATION			79.8 ~ 80 days

- Structural Members grouted and connected between picks.
- Hoist block remains the same, do not need to account for additional time.

Original Baseline Schedule: 97 work days

Potential Schedule Savings: 17 days (3.4 weeks)

- I. Introduction
- II. Project Overview
- III. Analysis #1: Precast Concrete Structural System
 - Precast Concrete System Overview
 - II. Structural System Breakdown
 - III. Sequencing
 - **IV. Schedule Impact**
 - V. Cost of System
 - VI. Cost Analysis
- IV. Analysis #2: Virtual Mock-ups for Building Façade System
- V. Analysis #3: Implementation of Alternate Dewatering System
- VI. Analysis #4: Value Engineering Stormwater Harvesting System
- VII. Conclusion & Recommendations
- VIII. Acknowledgements
- IX. Ouestions

- Data.
- Vendors Pricing: \bullet

 - Columns \$140/ L.F. •
 - Beams \$155/ L.F. •

Vendor Cost Estin

RSMeans Estima

Adjusted Estimat

*Adjusted estimate accounts for lack of specifications in RSMeans and lack of materials in lump sum vendor price. Also takes into account crane sizing upgrade.

Cost of System

Cost for the Precast System were estimated by Nitterhouse **Concrete Products pricings and RSMeans Assemblies Cost**

Hollow core planks - \$8.00/ S.F.

PRECAST SYSTEM COST ESTIMATES

imate	\$5,425,087
ate	\$7,793,203
ite	\$6,300,000

Cost Analysis

TOTAL SYSTEM COSTS (based on source)

Original Design – Cast in Place

Jacobs Cost Estimate

Turner Pay Application

Proposed Design – Precast Concrete

Precast System Cost

Cost Savings: \$535,598

\$7,168,807

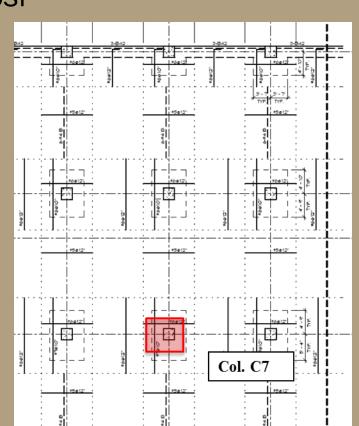
\$6,835,598

\$6,300,000

- I. Introduction
- II. Project Overview
- III. Analysis #1: Precast Concrete Structural System
 - Structural Breadth Analysis Punching Shear and Slab Strength
- IV. Analysis #2: Virtual Mock-ups for Building Façade System
- V. Analysis #3: Implementation of Alternate Dewatering System
- VI. Analysis #4: Value Engineering Stormwater Harvesting System
- VII. Conclusion & Recommendations
- VIII. Acknowledgements
- IX. Questions

Interior Column Punching Shear

- •


Calculated Shear Load at Column: 984 psf

Calculated Shear Strength: 1416 psf

 $V_c \ge V_u$, therefor adequate design

Structural Analysis

Precast System eliminates drop panels at columns. Stronger concrete used in precast system (6000 psi)

Hollow Core Slab Strength

- HDR, Inc. calculated live load of typical floor = 125 psf

SAFE S	UPERIMPOSED	SER	₹V I C	ΕL	OAE	DS					BC 2	2006	6 & /	ACI	318	-05	(1.2	D +	1.6	L)
St	rand							S	PA	۱ (F	EET)								
Pa	attern	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
4 - 1/2"ø	LOAD (PSF)	280	248	214	185	159	138	118	102	87	74	62	52	42			>	<	\leq	
6 - 1/2"ø	LOAD (PSF)	366	341	318	299	271	239	211	187	165	146	129	114	101	88	77	67	58	50	42
7 - 1/2"ø	LOAD (PSF)	367	342	320	300	282	265	243	221	202	181	161	144	128	114	101	90	79	70	61

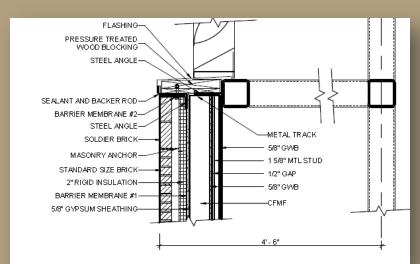
- Increased Schedule because of reduced span.
 - Additional approximated 6 days added to erection.
- No Additional Costs because cost based on square footage.

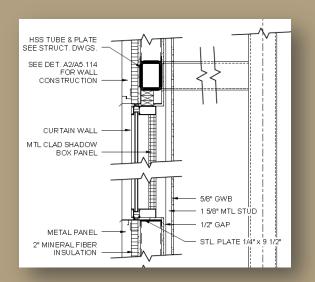
Criteria for allowable superimposed load and plank span (feet).

Analysis #2: Virtual Mock-ups

for Building Façade System

- I. Introduction
- II. Project Overview
- III. Analysis #1: Precast Concrete Structural System
- IV. Analysis #2: Virtual Mock-ups for Building Façade System
 - Virtual Mock-Up Overview
 - II. Quality & Safety Improvements
 - III. Schedule Impact
 - IV. Cost Analysis
- V. Analysis #3: Implementation of Alternate Dewatering System
- VI. Analysis #4: Value Engineering Stormwater Harvesting System
- VII. Conclusion & Recommendations
- VIII. Acknowledgements
- IX. Questions


- Create Virtual Mock-ups for building envelop.
- Detail connections to superstructure and to other façade systems.
- Façade systems includes:
 - Curtain wall
 - Metal Panels
 - Brick Veneer
 - Shop Window


Virtual Mock-Up Overview

Quality & Safety Improvements

- Quality significantly increases when performing the tasks.
- Subcontractors can easily understand the work to be performed and how to effectively complete the work.
- Better understanding how to complete the task effectively reduces risks and potential safety hazards.

- I. Introduction
- II. Project Overview
- III. Analysis #1: Precast Concrete Structural System
- IV. Analysis #2: Virtual Mock-ups for Building Façade System
 - Virtual Mock-up Overview
 - II. Quality & Safety Improvements
 - III. Schedule Impact
 - IV. Cost Analysis
- V. Analysis #3: Implementation of Alternate Dewatering System
- VI. Analysis #4: Value Engineering Stormwater Harvesting System
- VII. Conclusion & Recommendations
- VIII. Acknowledgements
- IX. Questions

- Time to create mock-ups: 2-3 weeks The time creating the mock-ups should occur around Dec. 8, 2011.

- Time Savings: 2-4 days
 - Based on Greenfield Hospital Case Study. (2.5 weeks) Associated Cost Savings: approx. \$94,710 35% of building schedule Reduction of system change orders by 50% \bullet

Schedule Impact

Cost Analysis \$3,000 - \$4,000 provided by Mortenson Construction • \$3,280 – \$9,840 based on \$82 an hour working on

- **Cost to create mock-ups:** \$3,000 \$9,840

 - models.

PROJECT COST SAVINGS: \$84,870 - \$91,710

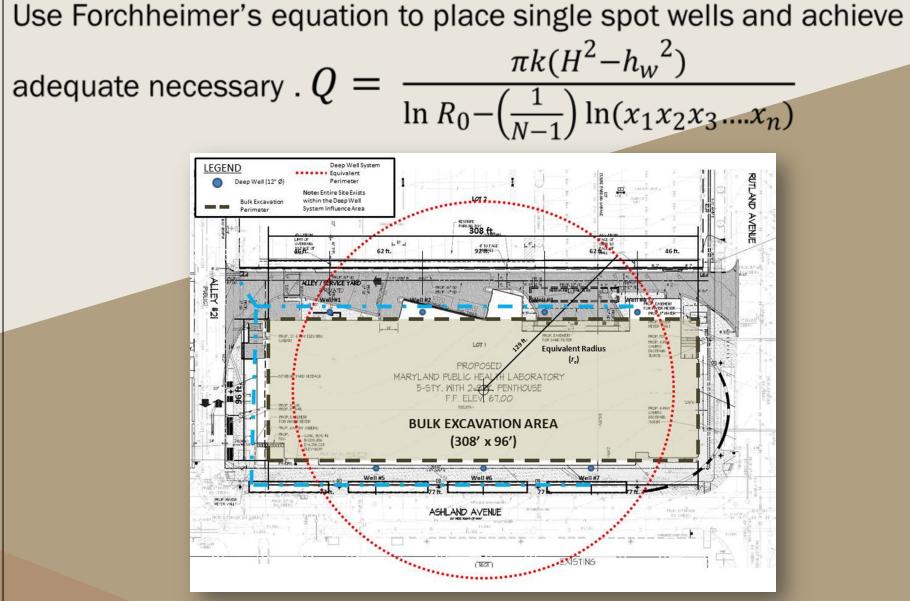
Efficiency savings of 0.3%. (based off 17% of project)

Analysis #3: Implementation of Alternate Dewatering System

- I. Introduction
- II. Project Overview
- III. Analysis #1: Precast Concrete Structural System
- IV. Analysis #2: Virtual Mock-ups for Building Façade System
- V. Analysis #3: Implementation of Alternate Dewatering System
 - System Selection
 - II. System Sizing
 - III. System Mapping
 - IV. Installation & Scheduling Durations
 - V. System Cost
 - VI. Cost Analysis
- VI. Analysis #4: Value Engineering Stormwater Harvesting System
- VII. Conclusion & Recommendations
- VIII. Acknowledgements
- IX. Ouestions

- Geotechnical Report Indicates clay and sandy soils.
- Groundwater table apparent at 18' depth from surface.
- Confined project boundaries.
- Existing Utilities
- Deep Wells
 - Useful for depth greater 15'.
 - Used in confined areas Adequate effectiveness with low permeable
 - soils

System Selection


System Sizing

Size depends on these major aspect:

- Site Excavation Dimensions (308'x 96')
- Groundwater Table Depth (approx. 18')
- Impervious Layer Depth (approx. 70')

Flow Rate Calculations and System Sizes Total Necessary Flow – 0.1793 m³/s Number of Wells – 7 deep wells Well Casings/Screens Sizing – 12" diameter Pump Size- 6"

- I. Introduction
- II. Project Overview
- III. Analysis #1: Precast Concrete Structural System
- IV. Analysis #2: Virtual Mock-ups for Building Façade System
- V. Analysis #3: Implementation of Alternate Dewatering System
 - System Selection
 - II. System Sizing
 - III. System Mapping
 - IV. Installation & Scheduling Durations
 - V. System Cost
 - VI. Cost Analysis
- VI. Analysis #4: Value Engineering Stormwater Harvesting System
- VII. Conclusion & Recommendations
- VIII. Acknowledgements
- IX. Ouestions

System Mapping

Installation & Scheduling Durations

DEEP WELL INSTALLATION DURATION

Drilling Deep Wells	7 wells	2 well/day	3.5 days
Pump Equipment Installation	7 wells	15 min/ well	1 hr. 45 min.
Discharge Pipe Installation	612 ft.	400 ft./day	1.53 days
TOTAL DEWATERING	INSTALLATION DURA	TION	5.25 days

- Installation occurs as excavation begins, Feb. 27, 2012.
- The system will run until all tasks below ground water table are complete (expected 143 days)
- System demobilization takes 2-3 days.
- Total system duration is 150 days.
- Dewatering system doesn't installation doesn't affect critical path, but will save the lost 2 months due to flooding.

- I. Introduction
- II. Project Overview
- III. Analysis #1: Precast Concrete Structural System
- IV. Analysis #2: Virtual Mock-ups for Building Façade System
- V. Analysis #3: Implementation of Alternate Dewatering System
 - I. System Selection
 - II. System Sizing
 - III. System Mapping
 - IV. Installation & Scheduling Durations
 - V. System Cost
 - VI. Cost Analysis
- VI. Analysis #4: Value Engineering Stormwater Harvesting System
- VII. Conclusion & Recommendations
- VIII. Acknowledgements
- IX. Ouestions

Equipment
Materials
Rental/Operatio
Dewatering Cost
Labor
Overhead
TOTAL COST

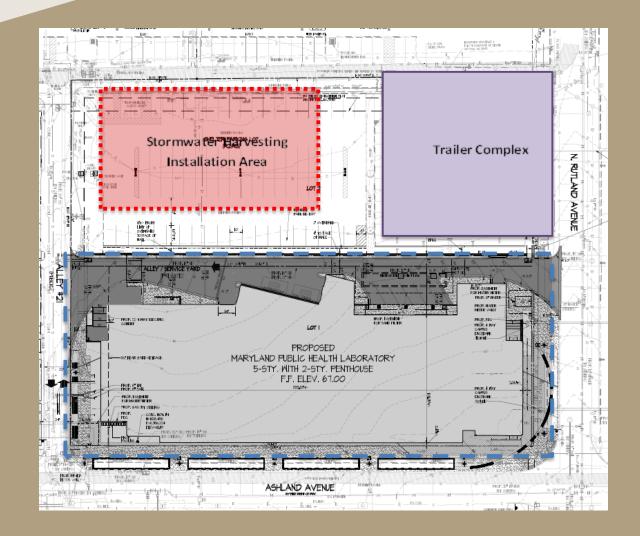
Cost	m Cost	Syste
Total Cost of Deep Well Sys	SYSTEM COST	DEEP WELL S
Cost of Original Dewatering	\$52,262	
	\$3,665	
Total Dewatering Cost with	\$53,700	ional Rates
Turners Projected Productiv	\$8,400	ost
Total Cost Savings of Syste	\$247,988	
	\$2,400	
	\$390,596	

t Analysis

- ystem: \$390,596
- ng System: \$185,000
- h Change Orders: \$770,381
- tivity Loss: \$1.8 million
- em: \$1.4 million

Analysis #4: Value Engineering

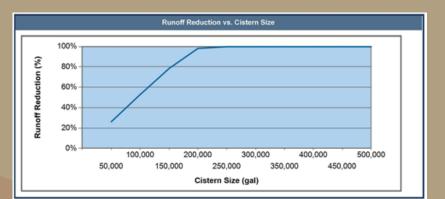
Stormwater Harvesting System


- I. Introduction
- II. Project Overview
- III. Analysis #1: Precast Concrete Structural System
- IV. Analysis #2: Virtual Mock-ups for Building Façade System
- V. Analysis #3: Implementation of Alternate Dewatering System
- VI. Analysis #4: Value Engineering Stormwater Harvesting System
 - System Overview
 - II. Proposed Installation Area
 - III. Cost Savings
 - IV. Cost of Installation
 - V. Cost Analysis
 - VI. Sustainability Evaluation
- VII. Conclusion & Recommendations
- VIII. Acknowledgements
- IX. Ouestions

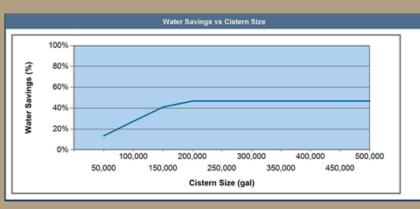
- 5 Underground Metal Cisterns that will hold roughly 250,000 gallons of stormwater runoff.
- 8' diameter cisterns.
- Will store potential grey water, roof run-off water and hardscape run-off water.
- Prefiltration and pump manhole placed within excavated installation area.

System Overview

Proposed Installation Area


Excavation Dimensions: 160' x 85'

I. Introduction


- II. Project Overview
- III. Analysis #1: Precast Concrete Structural System
- IV. Analysis #2: Virtual Mock-ups for Building Façade System
- V. Analysis #3: Implementation of Alternate Dewatering System
- VI. Analysis #4: Value Engineering Stormwater Harvesting System
 - System Overview Ι.
 - II. Proposed Installation Area
 - III. Cost Savings
 - IV. Cost of Installation
 - V. Cost Analysis
 - VI. Sustainability Evaluation
- VII. Conclusion & Recommendations
- VIII. Acknowledgements
- IX. Ouestions

	Rain	Fall	S	tormwater	0	Supp	ly .	Demand	Captured
	Total	Targeted	Targeted	Peak	Target	ed SW	Total		
Typical Rainfall Year	40	39	1,127,	795 33,367	62	359,354	62,386,365	132,811,059	62,378,145
Max Rainfall Year	58	56	1,628	058 62,930	1	,628,058	62,922,547	132,811,059	62,922,547
21 Year Total	836	816	23,683,	690 567,240	1,309	546,424	1,310,113,662 2,789,032,23		1,309,941,040
		tained (Targe Rainfall)	ted	Water Savings		Total Re	ained (Targeted Secondary)	l, Péak,	Savings
Typical Rainfall	1.	127,795	100%	62,378,144	47%		62,378,145	100%	\$455,360
Year	1.	12/22/22/2	1.5 (25.3)	1 (1898) (1990) (1990) (1990)					
the second se		628,058	100%	62,922,546	47%		62,922,547	100%	\$459,335

	Rain	fall		Stormwate	a (Supp	by .	Demand	Captured
	Total	Targeted	Targe	ted	Peak	Target	ed SW	Total	J.	
Typical Rainfall Year	40	39	1,1	127,795	33,367	62,	359,354	62,386,365	132,811,05	9 62,378,145
Max Rainfall Year	58	56	1,6	528,058	62,930	1	628,058	62,922,547	132,811,05	9 62,922,547
21 Year Total	836	816	23,6	83,690	567,240	1,309	546,424	1,310,113,662	2,789,032,23	9 1,309,941,040
						-	_			
		tained (Tary Rainfall)	reted	Wat	ter Savings		Total Rel	ained (Targeted Secondary)	I, Peak,	Savings
Typical Rainfall Year			eted 100%		ter Savings 378,144	47%	1.1.4.1.5.1.6.1		1, PE3K; 100%	Savings \$455,360
	1,	Rainfall)		62,		47% 47%		Secondary)	axenta L	

Cost Savings

Cost of Installation

STORMWATER HARVESTING SYSTEM INSTALLATION COST

Demolition

Earthwork

System Installation Fee

Stormwater Harvesting Equipment

Site Improvement

TOTAL STORMWATER HARVESTING COST

\$22,238

\$210,416

\$113,000

\$500,725

\$176,500

\$1,999,379

- I. Introduction
- II. Project Overview
- III. Analysis #1: Precast Concrete Structural System
- IV. Analysis #2: Virtual Mock-ups for Building Façade System
- V. Analysis #3: Implementation of Alternate Dewatering System
- VI. Analysis #4: Value Engineering Stormwater Harvesting System
 - System Overview
 - II. Proposed Installation Area
 - III. Cost Savings
 - IV. Cost of Installation
 - V. Cost Analysis
 - VI. Sustainability Evaluation
- VII. Conclusion & Recommendations
- VIII. Acknowledgements
- IX. Ouestions

Potential Cost Savings: Annual Savings with Typical Rainfall: \$455,360 Annual Savings with Max. Rainfall: \$459,335 21 Year Total Cost Savings: \$9,562,568

\$2 million

Pay off Period: 4.5 Years

Cost Analysis

Total Cost of Stormwater Harvesting System: approx.

Sustainability Evaluation

Water Efficiency

Innovative Wastewater Technologies (0 out of 2 points)

2.) Treat 50% of wastewater onsite. **UNATTAINABLE**

Water Use Reduction (2 out of 4 points)

1.) Reduce water consumption to 40%. UNATTAINABLE

Waster Reduction Percentage: 2.23% (Total of 33.23%)

- 1.) Reduce potable water for sewage by 50%. UNATTAINABLE

- I. Introduction
- II. Project Overview
- III. Analysis #1: Precast Concrete Structural System
- IV. Analysis #2: Virtual Mock-ups for Building Façade System
- V. Analysis #3: Implementation of Alternate Dewatering System
- VI. Analysis #4: Value Engineering Stormwater Harvesting System
- VII. Conclusion & Recommendations
- VIII. Acknowledgements
- IX. Questions

Conclusion & Recommendations

Analysis #1: Precast Concrete Structural System

COST SAVINGS: \$535,598

SCHEDULE SAVINGS: 2 weeks

INCREASED SAFETY

Analysis #2: Virtual Mock-ups for Building Façade Systems

COST SAVINGS: \$84,870 - \$91,710

SCHEDULE SAVINGS: 2-4 days

INCREASED PRODUCT QUALITY

SAFTEY SAFETY

- I. Introduction
- II. Project Overview
- III. Analysis #1: Precast Concrete Structural System
- IV. Analysis #2: Virtual Mock-ups for Building Façade System
- V. Analysis #3: Implementation of Alternate Dewatering System
- VI. Analysis #4: Value Engineering Stormwater Harvesting System
- VII. Conclusion & Recommendations
- VIII. Acknowledgements
- IX. Questions

Conclusion & Recommendations

Analysis #3: Implementation of Alternate **Dewatering System**

COST SAVINGS: \$1,400,000

SCHEDULE SAVINGS: 2 months

NO MATERIAL AND PROPERTY DAMAGE

Analysis #4 Value Engineering Stormwater Harvesting System

COST OF INSTALLATION: \$2,000,000

ANNUAL COST SAVINGS: \$455,000

PAY OFF PERIOD: 4.5 years

ADDITIONAL WORK DURATION: 1.5 months

NO LEED POINTS ABLE TO BE ACQUIRED

Ahmad Hamid – Jacobs Engineering **Brian Temme –** Jacobs Engineering **Thomas Stevenson** – Jacobs Engineering **Grace Wang** – Jacobs Engineering Dana Rumpulla – Turner Construction Co. **Corretta Bennett** – Turner Construction Co. Justin Beaver – Griffin Dewatering Co. Andreas Phelps – Balfour Beatty **Reno Russell** – Bigge Crane and Rigging Co. Joe Hockberger – Mersino Dewatering

Mitch Cormelius – Mortenson Construction Co. Jordan Kahlenberg – Contech Engineering Solutions Ken Dombroski – Contech Engineering Solutions

Academic Acknowledgments

Penn State Architectural Engineering Faculty Dr. Robert Leicht – CM Thesis Advisor

Industry Acknowledgments

Jacobs Engineering Turner Construction Company

HDR, Inc.

Special Thanks

QUESTIONS

